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ABSTRACT

Corrections offer an easy way for end-users to teach and collabo-
rate with a robot, while also offering rich information about task
constraints. However, these corrections reflect more than just the
optimality of the robot behavior, and are subject to additional influ-
ences such as task tolerance, physical effort, and the human’s sub-
jective expectation of whether the robot will succeed. We present
a predictive model of corrections that accounts for the impact of
these factors. We propose a user study to collect empirical data to
study how robot’s behavior influences when and how humans will
modify it. Finally, we discuss how our predictive model can help
robots learn more effectively from these corrections.
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1 INTRODUCTION

With the continued integration of machines into our everyday lives,
the principle of non-technical human teachers being able to ef-
fectively communicate with and efficiently train robots becomes
increasingly relevant. Current and prior research has looked into
how people can train a robot to complete manipulation-based tasks
using different modalities or interaction types, such as demonstra-
tions [2] and ranked preferences [7]. Alternatively, a person can
monitor a robot as it attempts to complete a task, interceding to
provide a correction when they deem it necessary to modify the
robot’s behavior [3, 10]. For example, if a robot that is supposed
to pick up a mug from the table is moving away from the table
instead, a human teacher may offer assistance by correcting the
robot’s motion and pushing it in the right direction. This correction
should inform how the robot behaves in future variations of the
task, while also implying how the robot should not behave (i.e., the
behavior that prompted the teacher to intercede in the first place).
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From a physical human-robot interaction perspective, correc-
tions are a natural method for collaboration and communication
between humans and robots [15]. For non-technical users, it is eas-
ier to express their intent by directly interacting with the robots,
as opposed to programming them. Furthermore, corrections put
the human in the role of a supervisor rather than teacher, where
they only step in as needed rather than try to teach the robot from
scratch. This reduces the amount of data required to improve task
performance and increases the efficiency of robot learning [17].

From a ML perspective, corrections have the potential to provide
rich information for a robot to learn an optimal model of the task
objective. Based on the initial behavior of the robot, a human’s
correction of that behavior can indicate what the robot did right
or wrong, and how to avoid making similar mistakes in the future.
However, corrections are complicated to interpret. Bayesian Inverse
Reinforcement Learning (BIRL) provides a method for learning a
reward function that maximizes the likelihood of the teacher’s feed-
back [6, 15, 18]. Yet, this approach requires that we have a model of
how the human feedback is influenced by the task objectives. When
learning from corrections, there are other conflating influences such
as the abruptness of the corrections (caused by the human’s binary
decision of whether or not to correct the robot’s behavior) and the
subjective bias that influences the teacher’s belief over whether or
not the robot will succeed at the task. This decision to interrupt
and modify the robot’s motion may occur after the robot has made
a mistake or in anticipation of a future mistake that has not even
occurred yet, and may be biased by the robot’s previous behavior
[16]. Prior work has focused on interpreting and learning from cor-
rections [5, 6, 15], but has not looked into how the teacher decides
to intervene and provide a correction in the first place.

The key challenge we address is how to isolate the influence of
task objectives on corrections from other conflating influences. To
do this, we need to first model the effects of these influences on
corrections. In this abstract, we hypothesize the effects of three
variables (legibility, task tolerance, and physical effort) on correc-
tions and formalize them as predictive models. We then propose a
user study to evaluate these models. Finally, we discuss how these
models can be used to improve ML algorithms in future work.

2 RELATED WORK

To provide corrections, a human user monitors the robot as it at-
tempts to complete a task. Throughout the robot’s motion, the user
may physically interact with the robot in order to help it to perform
the task better (i.e., nudging the robot arm in the right direction).
While the robot in in motion, corrections can be provided at regular
intervals [10] or at any time the human chooses to intervene [6, 15].
These modifications are recorded as the torque that participants
exert on the robot arm, the resulting changes in the robot’s position
and movement, and the timing of this interaction.
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Using this data, corrections are typically interpreted as the teacher
indicating a preference for the modified trajectory over the robot’s
originally-planned one, and that this preference is due to the op-
timality of the modified trajectory [6, 9, 15]. In [6, 15], the robot
updates its reward model immediately in order to change its future
behavior for the rest of the task. These prior works focus on how
the robot should interpret the correction based on how they reflect
the teacher’s intentionality [15] and physical effort [6], but they
do not model how or when the human teacher chooses to correct
the robot’s motion in the first place. Thus, for our study, we would
like to define a probability model of corrections that captures how
the robot’s behavior within a task affects the mental model and
expectations of the teacher for giving the corrections.

2.1 Bayesian Inverse Reinforcement Learning
Bayesian Inverse Reinforcement Learning (BIRL) involves inferring
the most probable reward function based on its expected influence
on the policy demonstrated by a teacher [19, 21]. For a collection
of human feedback (trajectories) Z, we can formalize the optimal
reward parameters o for a reward function R, (&) as:
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Within this formulation, P(&|w) is particularly important, as it
models how a human provides feedback ¢ based on their under-
standing of the task objectives (represented by w). The Boltzmann
distribution is often used to represent this probability by framing
the human’s feedback as a choice that a “noisily rational" human
makes from a set of possible choices (represented by C) [19, 21]:
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where ¢ (&) returns the feature trace of the trajectory £ Depending
on the interaction modality being used [9, 12], C may consist of
other trajectories that the human could have demonstrated [9],
other preferences that the human could have selected from a set
of options [4], or other ways that the human could have corrected
the robot’s motion [3, 15]. Importantly, the reward function R,
is scaled by f, which represents the expected optimality of the
human feedback (i.e., how well it adheres to R,,). When f — 0,
the human’s feedback is independent of w and thus will be chosen
based on a uniform distribution. When  — oo, the teacher will
only ever indicate the highest-reward choice according to R,.
This probability formulation assumes that the human’s feedback
is determined only by (1) the task objectives that the robot is trying
to learn and (2) the optimality of the teacher. However, due to
the complex and abrupt features of corrections, other factors may
influence how people provide corrections as feedback. The question
becomes: how can we more accurately model the probability of
corrections by considering these additional influences?

3 ADDITIONAL INFLUENCES ON
CORRECTIONS

We expect that determining when and how people correct robot
behavior can provide valuable insights, in addition to the optimality
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of the resulting trajectory. In this section, we outline two factors
that may influence how people provide corrections.

3.1 Task Tolerance

In the commonly-used Boltzmann distribution (Eq. 2), f represents
the expected optimality of the teacher’s feedback with respect to
the reward function R,,. Alternatively, it can be interpreted as the
teacher’s tolerance for non-optimality in their feedback. In either
interpretation, f is a constant variable for the teacher, and does not
reflect how different tasks involve different tolerance levels based
on the task constraints. We propose that corrections are provided
according to task-specific tolerances corresponding to each feature:
w = (<wi,f1>-,<wp Pn >). The various tolerance f; for
each constraint i indicates the distribution of each w;, and maps
the trajectory ¢ to a distribution of rewards: R, (£) = ¢(£) - .

3.2 Human Expectation of Robot Behavior

In prior work on learning from corrections, the robot always re-
quires a correction at some point in its motion. We are unaware of
any studies of how people decide whether to intercede in the first
place. We expect that people make this decision by observing the
robot’s behavior and constantly updating their belief over whether
the robot will succeed or fail at the task. Prior studies on humans’
trust in robots [13] and mental models of robot behavior and ca-
pabilities [8, 16] indicate that this belief can be influenced by the
robot’s reliability during its prior performance. We expect that the
robot’s competency in the task (i.e., the frequency at which it has
previously succeeded at the task) will influence people’s trust in it
and thus the frequency with which they provide corrections.
Additionally, trustworthiness can be influenced by the human’s
confidence in inferring the goal of a robot as they observe the robot’s
motions [1, 11, 14, 20]. Performing highly-legible motions enables
a robot to more clearly indicate its intentions, which increases the
human’s ability to predict the robot’s future actions [8]. Based on
this, we expect that legibility will also improve the human teacher’s
ability to determine whether they need to intervene and correct a
robot’s motions to prevent it from failing at the task. Overall, we
propose that the robot’s legibility and competency level influence
the human teacher’s expectation of the robot’s success, and further
influence how quickly they will intervene to provide a correction.

4 APPROACH

We now propose a model of how task tolerance and human expecta-

tions influence corrections. Our model is based on two hypotheses:

e H1: We can model corrections more accurately by separately
representing when and how people provide them.

e H2: To model when people provide corrections, the legibility of
the robot’s motion has a positive correlation with how quickly
people will correct the robot’s behavior.

We start by representing the robot’s total motion as a combina-
tion of its pre-correction and post-correction trajectories:

P(&ylw, &r) = P((&n1, EHo) @, ER) ®3)
= P(&n11€H0, 0, ER)P(Enolw, €R) 4

where w contains feature weights and corresponding tolerance con-
straints; £g is the robot’s original trajectory that it attempted to
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execute; &y is the actual trajectory that the robot executed (includ-
ing the human-provided correction). We divide £ into &p and
&r71, which correspond to the part of the trajectory before and after
intervention, respectively. The correction probability now consists
of the product of P(£gg|w, £R) (representing the probability of when
to intervene) and P(&g1|Exo, @, ER) (representing the probability
of how to correct the robot’s motion after intervening).

4.1 Modeling when people correct

We propose modelling when people correct the robot as their per-
ceived probability of the robot completing the task successfully,
based on the robot’s actions prior to the current timestep. This
depends on what it means for the robot to be successful (defined
by the task tolerance) and the human’s expectation of the robot’s
future behavior (defined by the legibility of the robot’s motion):

PlEiolon ) = [ PuCsléro)Rolsy) )
Sg

Pri(sq|éHo) describes the probability of the human inferring the

robot’s goal state s, given the trajectory &g, which should be

directly related to the legibility of the robot motion, the competency

level of the robot, and the task constraints. We will use the legibility

score formulated by [8]:
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The score for legibility tracks the probability assigned to the actual

goal G* across the trajectory: the more legible a trajectory is the

higher the probability is, weighted by a function f(t) giving more

weight to the earlier part of the trajectory. S — £(t) indicates the

trajectory from the start S until the timestep ¢.

legibility() = ()

4.2 Modeling how people correct

We propose modelling how people correct the robot as a function of
the task tolerance and the physical effort of applying that correction
to the robot. We adapt the effort-based probability function posed
by [6] as follows:

P(&m11ERo, @, ER) = P(ug|ép; 0 = (< 01, 1 >, -+, < @n, fn >))
™
= (@7 (&) +A [un| )
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Here, o is the vector that represents the task tolerance for each
feature, upy represents the torques that the teacher exerts on the
robot in order to correct its motion, and A reflects the degree to
which physical effort compromises the optimality of the teacher’s
feedback. We expect A to be consistent within each person from
one task to the next.

4.3 User Study Design

We propose a user study in which we measure when and how people
correct a robot’s motion during a series of pick-and-place tasks.
The task objective is for the robot to place a block of particular
color and shape into its corresponding hole. The robot will then
move slowly as it attempts to complete the task, and participants
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Figure 1: Examples of a legible trajectory (green), predictable
trajectory (blue), and illegible trajectory (red) for a robot
moving to goal #4.

may choose to interrupt or modify the robot’s motion as it moves
in order to help it succeed.

We plan this as an across-participants study consisting of 12
conditions: 3 legibility conditions (legible, illegible, and predictable
motion, as shown in Fig. 1) x 4 competency conditions (consistently
poor performance, consistently high performance, improving per-
formance, and worsening performance). Within each condition,
the robot performs variations of the block-placing task that differ
in their tolerance (i.e., how constrained the block’s position and
orientation is with respect to the target hole).

Our data analysis will involve fitting and evaluating Egs. 5 and 8
according to these condition parameters. During the process we will
record the timing of the interactions, the torque that participants
exert on the robot arm, and the resulting changes in the robot’s
position and movement. In future work, we will evaluate the effect
of using these models for Bayesian IRL in comparison to baselines
reflecting traditional Boltzmann-rational models for correction data
and train more effective Machine Learning algorithms that produce
better future robot behavior.

5 CONCLUSION

Corrections have the potential to provide valuable information
about how robots should and should not complete tasks. Yet, they
must be carefully interpreted due to their abruptness (based on
the teacher’s decision to interrupt and correct the robot’s motion)
and bias from the robot’s initial motion and previous performance.
We have proposed two important factors that may influence when
and how people correct robot behavior: (1) task tolerance and (2)
the human’s expectations of whether the robot will succeed. We
expect that by empirically modelling the effects of these factors on
corrections, we can develop more effective robot learners.
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