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ABSTRACT
Human-robot collaboration (HRC) has the potential to save hu-
man lives in safety-critical situations, such as robots collaborating
with people in space exploration missions, search and rescue mis-
sions, firefighting, and disaster response. In order for robots to be
able to assist humans in diagnosing and solving problems in these
safety-critical situations, they need to be able to actively provide the
social signals necessary to present high-dimensional data clearly,
challenge a teammate’s beliefs, collaboratively assess ambiguous
problems, and design solutions. Crew Resource Management (CRM)
offers a possible framework for how robots should exhibit these
social signals. CRM is a proven strategy for facilitating effective
human-human collaboration in safety-critical situations. In this
paper, we analyze how current work in HRC and human-autonomy
teaming aligns (and does not align) with the expectations set by
CRM. We propose a framework that outlines the role of mental
models in human-robot collaborative problem-solving, with the
goal of supporting several key CRM objectives. Finally, we iden-
tify research questions that must be addressed to implement this
framework, with the goal of enabling a robot to generate queries
and responses that support the human-robot team’s shared under-
standing of the problem.

CCS CONCEPTS
• Human-centered computing→ Collaborative interaction;
• Computing methodologies → Knowledge representation
and reasoning; Cognitive robotics.
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1 INTRODUCTION
In NASA’s Apollo 13 mission, when an oxygen tank explosion led to
rapidly declining oxygen and electrical power [38], Mission Control
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Center supported the astronaut crew by monitoring and evaluating
the results of the crew’s actions, providing feedback, designing
ideas, and sharing adapted plans [5]. This collaboration helped save
the crew’s lives, demonstrating the importance of decision-support
systems in safety-critical situations. Yet, this support may not be
available in long-duration exploration missions when communi-
cation with Mission Control Center is limited [40]. Similar needs
arise in other safety-critical situations, such as aviation, firefighting,
search and rescue, disaster response, and healthcare. How then can
we develop robots that collaborate with humans to diagnose and
solve problems in such situations?

In order for robots to be able to assist humans in diagnosing and
solving problems in these safety-critical situations, they need to
be able to actively provide the social signals necessary to present
high-dimensional data clearly, challenge a teammate’s beliefs, col-
laboratively assess ambiguous problems, and design solutions. Crew
Resource Management (CRM) [17, 25–28, 30, 49, 55] offers a possi-
ble framework for how robots should exhibit these social signals.
CRM is a proven strategy for facilitating effective human-human
collaboration in safety-critical situations, providing guidelines for
effective threat and error management, communication, decision
making, team adaptability, and shared mental models [30].

In this paper, we analyze current work in human-robot collabo-
ration (HRC) and human-autonomy teaming (HAT) with respect
to CRM. We propose a framework that outlines the role of mental
models in human-robot collaborative problem-solving, with the
goal of supporting several key CRM objectives including threat and
error management, standard operating procedures, communication,
mutual performance monitoring, team leadership, decision making,
team adaptability, and shared situational awareness.

Finally, we identify open research questions that must be ad-
dressed to implement this framework, with the goal of enabling a
robot to generate queries and responses that support the human-
robot team’s shared understanding of the problem.

2 BACKGROUND
2.1 Crew Resource Management (CRM)
In 2009, U.S. Airways flight 1549 hit a flock of geese during take
off, completely shutting down both engines [43]. Within only 3
minutes, Captain Sully successfully collaborated with the ground
team and his co-pilot to safely land in the Hudson River and save
all onboard. CRM helped make this possible [43].

CRM, initially developed to improve airline cockpit crews’ team-
work, is the "application of human factors knowledge and skills to
ensure that teams make effective use of all resources" [50]. "CRM en-
compasses effective and efficient error management through good
communication, decision-making, feedback and conflict resolution,
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workload management, and crew performance" [30]. Beyond avia-
tion, CRM has also been successfully applied to other safety-critical
domains including spaceflight, healthcare, maritime, gas, and rail
industries [30].

CRM’s core training concepts include: threat and error manage-
ment, verbalize verify monitor, standard operating procedures, com-
munication, briefing, backup behavior, mutual performance moni-
toring, team leadership, decision making, task-related assertiveness,
team adaptability, and shared situational awareness [30]. Shared
situational awareness, also known as shared mental models (SMMs),
refers to teammembers’ ability to "gather and use information to de-
velop a common understanding of the task and team environment"
[30]. SMMs have been identified as the most robust signal of effec-
tive teaming [9, 10, 34] and an indicator of creative problem-solving
in analog crews experiencing prolonged isolation and confinement
[14]. This is particularly important in situations of acute stress and
anxiety [6], where an individual’s attention and cognitive tunneling
"could result in failure to detect potentially critical events" [29].

2.2 Human Autonomy Teaming (HAT)
HAT "involves humans working interdependently toward a com-
mon goal along with autonomous agents" [46]. Shively et. al. iden-
tified that HAT research has a lot to learn from CRM and that it is
beneficial to expand CRM to include collaboration between auto-
mated teammates and humans [50]. They also identified that (1) the
existing HAT concepts bi-directional communication and working
agreements have the potential to support CRM-like behavior and
(2) using these existing HAT concepts, automation can be designed
to mirror CRM skills [50]:

• Bi-directional communication: This enables "humans to
team effectively with automation and allows the human
(and automation) to question, share hypotheses, provide
additional input, etc. just as human teammates would" [50].

• Working agreements: In CRM, standard operating pro-
cedures include checklists and standardized callouts and
aim to "ensure that a known, safe, efficient set of actions is
used to navigate through complex procedures that require
great accuracy" [50]. HAT has a similar concept to standard
operating procedures [21, 42] "working agreements, which
encapsulate goals, procedures, and division of responsibility
into a package that can be specified offline and instantiated
quickly in real-time situations" [50].

2.3 Mental Models
Mental models have been defined as "organized knowledge struc-
tures that [...] help people to describe, explain, and predict events in
their environment" [41]. There are different types of mental models
including ones that model procedures for tasks, team member’s
preferences and abilities, and interaction between team members
[41][54].

Shared Mental Models. Decades of organizational psychology
research showing that SMMs improve teamwork in humans [15,
19, 37, 52] has led to work on SMMs in HRI [19, 45]. Gervits et. al.
were the first to introduce a computational framework for both
robot-robot SMMs (SMMs between robots) and human-robot SMMs
[19]. They were also the first to test the hypothesis that SMMs

improve human-agent teams’ coordination and performance, show-
ing that robot-robot SMMs improve overall human-robot team
performance [19]. Nikolaidis and Shah worked on human-robot
cross-training, where a robot and human learn a shared collabora-
tive task plan by alternating roles [45], focused on the human and
robot’s task execution and enabling a robot to adapt to a person’s
established workflow patterns. They showed that emulating proven
human teamwork methods, like cross-training, may be the best
way to achieve "effective and fluent human-robot teaming" [45].

Toward Theory of Mind (ToM). Being able to predict the mental
states of others is critical for distributed multi-agent systems that
need to communicate and cooperate. In human-human interactions,
ToM is key to communicating information in conversations [36] and
in maintaining consensus during collaboration and communication.
[3]. ToM “is the ability to explain, predict, and interpret behavior
by attributing mental states such as desires, beliefs, intentions and
emotions to oneself and to other people” [13]. When operating as a
part of a team, these inferences are necessary for deciding when and
with whom one should share its own intentions in order to reach
consensus within the team [58]. Humans naturally infer mental
models of their teammates’ beliefs and goals based on their team-
mates’ dialogue [7]. Enabling ToM between humans and robots is a
challenge, and often inferred models do not reflect the truth, which
can be framed as a model reconciliation problem [11]. Although
there has been a recent rise in modeling multi-agent collaboration
[12, 18, 33, 53], integrating ToM remains a significant challenge
[60]. Mental models can not be directly observed, but we can infer
them using observable evidence including dialogue. [2].

3 PROBLEM FORMULATION
Prior work on HRC has generally focused on human-robot coor-
dination [32, 44] where the human and robot work independently
in a shared space toward a shared goal. We focus on a human and
robot working together to diagnose and solve complex problems,
where both the robot and human take initiative to piece together
their partial information toward a solution.

We represent the human-robot SMM as a combination of (1)
what the robot believes about the problem and (2) what the robot
believes the human believes about the problem. Consider this ex-
ample: onboard a deep space vehicle, during lack of communication
with Mission Control Center, a time-critical problem occurs within
the Environmental Control and Life Support System, and a robot
collaborates with the astronaut crew team to diagnose and solve
the problem.

Here, the SMM would represent (1) the robot’s belief that a valve
is working properly, and (2) the human’s belief that the valve is not
working properly. It is possible for this SMM to reflect conflicting
beliefs held by the human and robot. Alternatively, a consensus
SMM would only represent the beliefs the human and robot agree
on. We view consensus building as a step after building a SMM
that involves managing conflicts to build human-robot agreement,
which we plan to address in our future work. Our goal is for the
robot to generate queries and responses that are jointly informative
for both the robot and human’s understanding of the problem so
that they can identify an appropriate solution.
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Figure 1: In the human’s (𝑠ℎ) and the robot’s (𝑠𝑟 ) knowledge graph representation of their mental model, each node indicates
their belief and confidence over the current status of a particular spacecraft system’s component. We propose using interaction
between the robot and the crew to create a shared mental model 𝑠𝑐 .

3.1 Framework for Human-Robot Collaborative
Problem-Solving

In Fig. 1, we represent the problem the human-robot team aims
to solve as a knowledge graph. Referencing our previous example,
this knowledge graph contains one node for each component of
the Environmental Control and Life Support System (i.e., oxygen
pressure gauge, each sensor) and edges between nodes to indicate
how they influence each other. The graph’s structure is initialized
to reflect the extensive training astronauts receive, including infor-
mation in the standard operating procedures (i.e., crew checklists).
There are three total such knowledge graphs that each represent
the mental model of an agent’s belief over the problem state: one
for the human’s, one for the robot’s, and one for the human-robot
SMM.

The specific true system state of the knowledge graphs’ nodes
(i.e., the state of each component in the system) and edges (i.e.,
how the components influence each other) is unknown to the robot
and human. During the problem-solving process, the team’s under-
standing of how the system’s components influence one another
can change (especially if the system is in an anomaly state where
these relationships do not match the crew’s training knowledge,
including information in the standard operating procedures about
the system).

The human-robot team may even have an incorrect understand-
ing of the graph structure. For example, in a spacewalk mishap
(U.S. Extravehicular Activity 23), the crew and International Space
Station community attempted to diagnose the source of water intru-
sion into an astronaut’s helmet. Despite their expertise on spacesuit
systems, they mistakenly attributed the problem to a leaking drink-
ing bag [1], when in fact it was caused by "a clog inside the EMU

[spacesuit] Fan Pump Separator, caused by inorganic material that
led to water spilling into the vent loop" [24]. If we consider our
framework’s knowledge graph mental model representation of the
crew in this example, one of the inaccuracies of the knowledge
graph structure is that it did not have an accurate edge connection
between the vent loop node and the helmet node.

The goal of the human-robot team is to collaborate in order to
identify the true, hidden state of the system. We formalize this
collaboration as the following parts:

• The robot’s mental model sr contains the robot’s belief
of the system state and is informed by the robot’s sensor
readings. This model may be incomplete (due to a lack of
sensors for some components) or incorrect (due to faulty
sensor readings).

• The human’s mental model sh contains the human’s belief
of the system state and is informed by the human’s access
to sensor readings, physical observations of the system, and
the human’s training knowledge of the system. This model
may also be incomplete or incorrect.

• The shared mental model sc contains the robot’s estimate
of the robot and crew’s hidden shared mental state, which
is built over time through the human and robot generating
queries and responses that are jointly informative for both
the robot and human’s understanding of a problem so that
they can collaboratively identify an appropriate solution.

The robot can generate queries in order to learn from the hu-
man’s understanding of the problem state and to suggest diagnostic
measures. In doing so, however, the robot’s queries are likely to also
influence the human’s understanding of the problem [22, 35, 47, 51].
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The robot should leverage this phenomenon in order to ask ques-
tions that are not only informative to its ownmodel, but also toward
a SMM of the problem state sc with the crew because studies show
that having a SMM is key to effective teaming [9, 10, 34]. As shown
in Fig. 1, the SMM is built over time through each query-response
interaction. This essentially involves performing a belief update
𝑃 (𝑆𝑖+1𝑐 |𝑆𝑖𝑐 , ⟨𝑞, 𝑟 ⟩) for a Hidden Markov Model (HMM), where the
crew response 𝑟 to a query 𝑞 is an emission of the hidden SMM 𝑠𝑐
at query-response iteration 𝑖 .

Working toward a consensus of the problem state is not always
optimal. Prior work has identified several key factors for success-
ful and creative problem-solving [6, 39]. Of these key factors is
managing openness which requires revisiting old beliefs about the
problem state that may be incorrect and prevent the team from
being able to reconcile new evidence [59]. Problem-solving requires
a synergy between working toward a shared consensus and chal-
lenging beliefs. In our future work, we aim to emulate key practices
in human-human creative problem-solving in HRC.

4 OPEN RESEARCH QUESTIONS
Based on this framework, our primary goal is for the robot to
produce queries and responses that are maximally informa-
tive to the human-robot team’s shared understanding of the
problem. Toward this objective, we identify two open research
questions:

• RQ1: How can we infer the human’s mental model through
their dialogue (query or response) with the robot?

• RQ2: How does a robot’s dialogue influence the human’s
mental model of the problem?

4.1 Inferring Mental Models Through Dialogue
We aim to maximize information gain with respect to the human
and robot’s shared understanding of the problem. A key challenge
to accomplishing this aim is this: How will the robot estimate this
shared understanding in our framework? The green arrow in Fig. 1
represents this challenge. To estimate this shared understanding,
the robot must (1) estimate the human’s mental model and (2)
compare the human’s mental model and its own mental model to
estimate the SMM. This challenge requires us to investigate RQ1.

Proposed Work. We propose adapting and extending Briggs and
Scheutz’s belief update rules for utterances [7] to our problem.
We will extend them to dynamically update the knowledge graph
representations of the human, robot, and shared mental models.
More specifically, as shown in Fig. 1, we aim to build a SMM over
time through multiple query-response interactions. We expect that
a key challenge will involve adapting the belief update rules so they
are compatible with our knowledge graph representations and then
extending these rules to support our complex collaborative problem-
solving dialogue context. Briggs and Scheutz’s belief update rules
are simplified to provide a starting point. A specific example of
their simplification is that their belief update rules assume that "an
agent always believes all propositions it is able to infer from the
utterance of another agent" [7]. We will need to modify this for our
problem statement because collaborative problem-solving requires
these belief update rules to support a variety of complex behaviors
including challenging beliefs and reconsidering past beliefs.

4.2 Predicting How Dialogue Influences Mental
Models

The previous RQ involved estimating the human’s mental model
based on their utterances, but what influences that mental model
in the first place? Prior work shows that a robot’s dialogue can
influence a human’s perception of the robot’s abilities [16, 23]. It can
also build a human’s trust in the robot’s decision-making (including
inappropriate trust [31, 48]). In order to maximize accurate shared
understanding of the problem, it is important to model how the
robot’s own dialogue is likely to affect the human’s mental model.
The blue arrows in Fig. 1 represent this problem of generating
queries and responses, with the goal of creating a SMM of the
problem state. In order to achieve this goal, it is essential that we
understand how the robot’s dialogue influences the human’s mental
model (and ultimately, the SMM).

Humans’ ability to predict others’ future actions is key to success-
ful social interactions [56]. Beun [4] views the purpose of dialogue
as being to influence "the relevant aspects of the mental state of a
recipient," and one of the first models of mental states [20] defined
the purpose of dialogue as being "to change the interlocutor’s men-
tal state and reach the goals of the interaction" [8]. If the purpose
of dialogue involves changing the recipient’s mental model in a
specific way towards a goal, then it is essential that the speaker
can predict their dialogue’s impact on the recipient. This leads us
to RQ2.

Most work related to this RQ centers on the role of trust in HRI
[48][57] and robots communicating their abilities [23], but does not
offer other explanations for how the robot’s dialogue may influence
the human’s mental model of the problem.

Proposed Work. This requires us to introduce a new model that
predicts how a robot’s queries and responses influence the human’s
mental model of the problem. This is an open problem that could be
addressed by a user study that evaluates how people infer knowl-
edge from a robot’s dialogue.

5 CONCLUSION
In order for robots to be able to assist humans in diagnosing and
solving problems in safety-critical situations, they need to be able
to actively provide the social signals necessary to present high-
dimensional data clearly, challenge a teammate’s beliefs, collabo-
ratively assess ambiguous problems, and design solutions. In this
paper, we analyzed how current work in HRC and HAT aligns
(and does not align) with the expectations set by CRM. We then
presented a framework for addressing this problem via the lens of
CRM. Finally, we identified two key research questions to guide
our future work on implementing this framework, with the goal
of enabling a robot to generate queries and responses that support
the human-robot team’s shared understanding of the problem.
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