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Abstract
Corrections offer a natural modality for people to provide feed-

back to a robot, by (i) intervening in the robot’s behavior when
they believe the robot is failing (or will fail) the task objectives
and (ii) modifying the robot’s behavior to successfully fulfill the
task. Each correction offers information on what the robot should
and should not do, where the corrected behavior is more aligned
with task objectives than the original behavior. Most prior work on
learning from corrections involves interpreting a correction as a
new demonstration (consisting of the modified robot behavior), or
a preference (for the modified trajectory compared to the robot’s
original behavior). However, this overlooks one essential element
of the correction feedback, which is the human’s decision to inter-
vene in the robot’s behavior in the first place. This decision can be
influenced by multiple factors including the robot’s task progress,
alignment with human expectations, dynamics, motion legibility,
and optimality. In this work, we investigate whether the timing
of this decision can offer a useful signal for inferring these task-
relevant influences. In particular, we investigate three potential
applications for this learning signal: (1) identifying features of a
robot’s motion that may prompt people to correct it, (2) quickly
inferring the final goal of a human’s correction based on the timing
and initial direction of their correction motion, and (3) learning
more precise constraints for task objectives. Our results indicate
that correction timing results in improved learning for the first two
of these applications. Overall, our work provides new insights on
the value of correction timing as a signal for robot learning.
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1 Introduction
When a robot is performing a task and appears to be failing (or

about to fail), a human can intervene and physically correct the
robot’s motion to achieve the intended task objective. Compared
to traditional paradigms with designated teaching and deployment
cycles, these intervention-based interactions offer a practical source
of training data: 1) they are more data-efficient [16], as the robot is
continuously deployed and corrected only when necessary; and 2)
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they enable more intuitive interactions [3, 34], since they draw on
human domain expertise without requiring technical interfaces or
specialized instruction for the humans. In practice, people provide
corrections due to perceived violations of task constraints, such
as task progress [2, 32], safety constraints [1, 41], or user prefer-
ences [49, 50], making them potentially highly informative toward
learning these task constraints.

Prior work on learning from corrections [3, 20, 26, 27, 40] primar-
ily formulates it as an Inverse Reinforcement Learning (IRL) prob-
lem, where the robot infers the reward function it should optimize
during the task by treating corrections as evidence about the reward
function’s parameters. Within the IRL framework, prior work has
focused on the spatial aspects of corrections — such as where and
how the robot’s motion is adjusted — while overlooking another
critical dimension: the human’s decision to intervene in the robot’s
behavior in the first place. Prior studies show that motion features
such as efficiency, safety, legibility, and human-likeness shape how
people interpret and respond to robots [1, 4, 12, 19, 35, 41]. Based
on the interpretations on robot motions, humans may decide that
the robot’s current trajectory is inadequate and intervene to ensure
task success. Thus, the decision to intervene reflects the moment
when humans internally judge that the robot requires assistance —
and provides insight into why the correction occurs [30, 46].

In this work, we focus on physical correction to a robot. We
hypothesize that the timing of human’s intervention deci-
sion offers insight into the underlying task objectives. We
investigate this hypothesis in the context of three learning-related
applications (and corresponding research questions):

RQ1: What features of the robot’s motion prompt people to
correct it? We aim to understand when and why corrections occur,
enabling the future design of robot trajectories that either elicit
informative corrections or avoid unnecessary ones.

RQ2: Can we utilize the information available at the onset of
the correction to directly infer the task goal? This capability could
enable future robots to respond to human corrections in real time.

RQ3: Can we learn more precise constraints about the task goal
by using timing information? This would allow a robot to learn
more precise task constraint information that may not be captured
from spatial cues alone.

Our results indicate that timing information contributes mean-
ingfully to the first two applications. Our main contributions in-
clude: 1) We evaluate the contribution of individual trajectory-
based features to correction timing prediction through a feature
ablation study, providing insights into which aspects of robot mo-
tion influence humans’ decisions to intervene. 2)We demonstrate
that incorporating timing information enhances early inference
of human-intended goals from correction onset cues, but provides
limited gains for refining fine-grained task constraint learning.



2 Related Work
2.1 Learning from Corrections

Correction feedback occurs when a human intervenes during
a robot’s task execution to modify its ongoing motion and help
it succeed. Prior work has leveraged such corrections as demon-
strations. For instance, Bajcsy et al. [4], Losey et al. [34] interpret
human corrections as intentional actions that reveal information
about the task objective parameters, allowing the robot to update
its model accordingly. Bobu et al. [6] argue that human correc-
tions may fall outside the robot’s hypothesis space and thus be
misleading if incorporated directly; to address this, they introduce
situational confidence, weighting each correction by how well the
robot’s current hypothesis can explain the human input. Zhang
and Dragan [54] treat local corrections as partial demonstrations
and extrapolate them to infer the human’s intended full trajectory
for objective learning.

Beyond demonstrations, other studies have modeled corrections
as preferences, assuming that the corrected trajectory is more
aligned with the human’s desired objective than the original. For
example, Jain et al. [20, 21], Wilde et al. [51] consider corrections as
iterative, incremental trajectory refinements that gradually shift the
robot’s behavior toward the desired trajectory through comparison-
based updates. Similarly, Mehta and Losey [36] treat corrections
as evidence that the corrected trajectory segment is locally more
desirable than nearby perturbations.

However, these works primarily focus on learning from the cor-
rection once it has occurred, rather than why or when the human
decided to intervene. Korkmaz and Bıyık [30] introduced probabilis-
tic models to predict both when an intervention occurs and how the
human corrects, integrating these signals into policy learning and
achieving high policy update performance. While their approach
leverages intervention signals to improve robot behavior, it does not
evaluate whether the model itself accurately reflects the underlying
human decision-making process. In particular, their framework
assumes Boltzmann-rational human actions [33], where human
corrections are modeled probabilistically as being exponentially
more likely for actions that yield higher expected rewards.

While the work above captures behavioral variability, it frames
corrections as outcomes of optimization rather than as expressions
of human intent shaped by task goals and interaction context. In
practice, however, corrections can be indicative of humans’ intent
to adjust the robot’s behavior toward a desired outcome: Jin et al.
[25] infer instantaneous intent from directional feedback, while
Schrum et al. [42] learn individualized mappings that translate hu-
man correction styles into intended objectives. In parallel, Bayesian
frameworks for intent recognition in collaborative settings [18, 22]
demonstrate how probabilistic inference can recover latent human
goals from behavioral signals. Together, these insights motivate our
approach: if corrections reflect a human’s internal evaluation of the
robot’s performance, then their timing and spatial characteristics
should provide implicit cues for goal inference.

2.2 Human Feedback Timing
In social psychology, Nosek [38] demonstrates that the timing of

a person’s response reveals underlying mental representations and
cognitive processes, providing a window into how people internally

Figure 1: Definitions of correction-related terms when a human intervenes
during a robot’s pre-planned trajectory 𝜉 , resulting in a corrected trajectory
𝑐 . The timing information is represented by the correction time 𝑡𝑐 , while
the spatial information includes the grasp position 𝑐𝑝 , the initial correction
velocity 𝑐′𝑝 , and the release position 𝑐𝑙 . The ground truth goal distribution is
P∗ (𝑔) .

evaluate and interpret stimuli. Similarly, research on conversational
feedback shows that the timing of verbal backchannels reflects a
listener’s internal predictive model of dialogue, indicating moments
of understanding or alignment with the speaker’s intent [39]. These
findings suggest that the timing of human feedback is not arbitrary
but a behavioral manifestation of internal evaluation processes.
Extending this idea to human–robot interaction, the timing of hu-
man feedback can convey implicit judgments about the robot’s
performance. For example, Wang et al. [48] examined how human
correction feedback is affected by robot behavioral features — such
as motion legibility and competency. They found that people tend
to intervene earlier and sometimes provide unnecessary corrections
when the robot appears more competent. Spencer et al. [44] show
that the moment of human intervention signals when the robot’s
behavior becomes undesirable, effectively partitioning the action
space into acceptable and unacceptable regions. Thus, feedback tim-
ing serves as a threshold on human tolerance for error and offers
an implicit learning signal for the robot.

While prior work demonstrates that intervention timing carries
valuable information for learning, it does not examine which factors
of robot motion drive humans’ intervention decisions or how the
timing of those decisions can be leveraged to infer task constraints.
Our work aims to fill this gap by connecting humans’ decisions
to intervene with early goal inference and precise task constraint
learning.

3 Problem Definition
Our goal is to model how the timing of a human’s interven-

tions can serve as a learning signal for the robot (toward inferring
the task goal). We consider a scenario where the robot executes a
pre-planned trajectory 𝜉 = {𝑥𝑡 }𝑇𝑡=1, where 𝑥𝑡 is the robot gripper
position at each time step 𝑡 . During this execution, the human may
choose to intervene in the robot’s motion at any time 𝑡𝑐 ∈ [1,𝑇 ] to
provide a correction. In doing so, they guide the robot through a
trajectory 𝑐 = {𝑥𝑡 }𝑇𝑐𝑡=𝑡𝑐 (𝑇𝑐 being the time when the correction ends),



from which we extract timing and spatial information. The timing
information consists of 𝑡𝑐 (the timestep at which the correction
begins). The spatial information consists of 𝑐𝑝 = 𝑥𝑡𝑐 ∈ R3 (position
where people grasp the robot gripper), 𝑐′𝑝 = Δ𝑡𝑐𝑝 ∈ R3 (the initial
correction direction: velocity), and 𝑐𝑙 = 𝑥𝑇𝑐 ∈ R3 (where people re-
lease the gripper at the end of the correction). After the correction,
the robot re-plans its trajectory based on its understanding of the
task.

To address RQ1, we aim to identify which aspects of robot mo-
tion influences the human’s decision to intervene. If certain motion
features maximize a model’s accuracy to predict correction timing,
it suggests that those features are closely tied to the human inter-
vention decision. Our goal is to learn the conditional distribution
P(𝑡𝑐 | 𝜉, 𝑔) that models when corrections occur based on the robot
original trajectory 𝜉 and task goal 𝑔 ∈ R3 (a gripper position), from
which we can quantitatively evaluate which trajectory-based and
task-related features explain what triggers intervention decision.

To address whether correction timing information improves
direct task goal inference when using correction onset information
(RQ2) and enhances precise task goal inference (RQ3), we consider
the task goal 𝑔 drawn from a task-dependent distribution P∗ (𝑔),
which represents the likelihood of goal locations that result in
successful task completion. This distribution is unknown to the
robot and constitutes what it aims to learn. Our objective is to
evaluate whether incorporating correction timing 𝑡𝑐 can improve
the inferred goal distribution P(𝑔 | 𝜉, 𝑡𝑐 , 𝑠𝑐 ) — estimated from the
robot’s trajectory 𝜉 , timing information 𝑡𝑐 , and spatial correction
cues 𝑠𝑐 — to better approximate the true task constraint P∗ (𝑔),
compared to inference using only spatial information P(𝑔 | 𝜉, 𝑠𝑐 ).
When 𝑠𝑐 = (𝑐𝑝 , 𝑐′𝑝 ), representing the grasp position and initial
correction direction, the resulting goal inference evaluates how
well the model can infer the goal distribution directly from the
onset of correction, addressing RQ2. When 𝑠𝑐 = 𝑐𝑙 , the release
position, the model infers the precise goal distribution based on the
end of the correction, corresponding to RQ3.

4 Approach
We propose a two-stage approach to model and utilize human

correction timing for improved robot learning. In the first stage, we
train a transformer-based timing prediction model to (i) take task-
and motion-related trajectory features as input and (ii) output the
probability of the human correcting the robot at each time step. This
enables us to analyze which aspects of robot motion prompt human
interventions. In the second stage, we train a goal inference model
to integrate both the spatial (𝑠𝑐 ) and temporal (𝑡𝑐 ) characteristics
of the correction to infer the goal distribution P(𝑔 | 𝜉, 𝑡𝑐 , 𝑠𝑐 ). By
comparing it against a spatial-only baseline P(𝑔 | 𝜉, 𝑠𝑐 ), we evaluate
whether correction timing offers a useful signal for robot learning;
i.e., whether it improves inference of human-intended correction
goals and task constraints.

4.1 Predicting WHEN People Give Corrections
4.1.1 Feature Extraction

Prior studies have incorporated both velocity-related and task-
related motion features into learning frameworks [4, 19], which are

Table 1: Time-series features used for modeling robot be-
havior and human corrections. The design of these features
is grounded in prior literature: each cited work motivates
the inclusion of a specific aspect of robot motion shown to
influence human perception and intervention behavior.

Feature Equation

Expectation Alignment (Vel.) [13, 14] 𝑣𝑡 ·𝑣
opt
𝑡

∥𝑣𝑡 ∥∥𝑣
opt
𝑡 ∥

Expectation Alignment (Pos.) [30, 46] ∥𝑥𝑡 − 𝑥
opt
𝑡 ∥

Directness Alignment (Vel.) [13, 14] 𝑣𝑡 ·𝑣
𝑔
𝑡

∥𝑣𝑡 ∥∥𝑣
𝑔
𝑡 ∥

Velocity Consistency [52, 53] 𝑣𝑡 ·𝑣𝑡−1
∥𝑣𝑡 ∥∥𝑣𝑡−1 ∥

Legibility [12]
∫
P(𝑔 |𝜉𝑆→𝑥𝑡

)𝛾𝑡 𝑑𝑡∫
𝛾𝑡 𝑑𝑡

Task Progress (Dist. to Goal) [13, 14] ∥𝑥𝑡 − 𝑥𝑔 ∥
Optimality [4, 6, 7, 34] exp(−L(𝜉𝑠→𝑥𝑡 )−Lopt (𝜉𝑥𝑡→𝑔 ) )

exp(−L(𝜉𝑠→𝑥𝑡−1 )−L
opt (𝜉𝑥𝑡−1→𝑔 ) )

closely tied to what humans perceive and respond to during collabo-
ration. Characteristics such as human-likeness [35], efficiency [19],
and safety [1, 41] influence how easily humans can interpret and
adapt to robot motion. In addition, legibility is known to play a key
role in conveying a robot’s intent [12]. The degree to which a ro-
bot’s behavior aligns with what humans consider optimal strongly
affects their likelihood of intervening [30, 46]. Taken together, these
works suggest that the human decision to intervene are influenced
by robot motions.

Human Expectation-related Features. Since humans have a pref-
erence for natural robot trajectories [37], we compute an optimal
reference trajectory from each time step to the goal using a PID con-
troller. This trajectory represents a smooth, dynamically feasible
motion that a human might perceive as a natural movement toward
the goal. From this trajectory, we obtain the optimal next velocity
𝑣
opt
𝑡 and optimal next position 𝑥opt𝑡 (Additional details about the PID
controller and the construction of these reference trajectories are
provided in Appendix A.1.1.). We then define two alignment-based
features: (F1) the cosine similarity between the robot’s current
velocity 𝑣𝑡 and the optimal velocity 𝑣opt𝑡 and (F2) the Euclidean dis-
tance between the current position 𝑥𝑡 and the optimal next position
𝑥
opt
𝑡 .
In addition to this locally optimal reference, we also define a

direct-to-goal expectation, where the robot is expected to move
straight toward the goal without curvature. This yields: (F3) the co-
sine similarity between the current velocity 𝑣𝑡 and a direct velocity
vector 𝑣𝑔𝑡 pointing from 𝑥𝑡 to the goal 𝑔.

Dynamics-related Features. Robot dynamics and velocity patterns
impact how human adapt to and interact with the robot [35, 52, 53].
For dynamics-related features, we included: (F4) motion consistency,
measured by the cosine similarity between 𝑣𝑡 and the previous
velocity 𝑣𝑡−1.

Task-Performance-Related Features. To quantify how interpretable
the robot’s motion is to a human observer, we included (F5) a leg-
ibility score based on Dragan et al. [12], shown in Table 1 (see
Appendix A.1.2 for details).



Additionally, we capture (F6) task progress as the Euclidean
distance from the robot’s current position 𝑥𝑡 to the goal𝑔, following
prior work [13, 14].

And finally, (F7) Boltzmann rational optimality. Prior work on
corrections [4, 6, 7, 34] models the likelihood of human intervention
as a function of trajectory optimality. A common baseline is the
Boltzmann rationality model [5, 55], which assumes that humans
are exponentially more likely to provide a correction as the robot’s
behavior becomes increasingly sub-optimal. In our task, we focus
on efficiency [12] and define optimality as the inverse of the total
path length — specifically, the sum of the trajectory length up to the
current time step and the length of the optimal path from that point
to the goal. We encode optimality as a single time-varying feature:
the ratio between the current and previous time step’s optimality
values (shown in Table 1).

4.1.2 Timing Prediction Model

Inputs. To analyze how features evolve over time and how they
relate to human intervention, we convert each original robot trajec-
tory into a temporal sequence. Each robot pre-planned trajectory
𝜉 = {𝑥𝑡 }𝑇𝑡=1 is discretized into 𝑇 time steps and converted into a
featurized representation Φ(𝜉, 𝑔) =

[
𝜙𝑘
𝑡 (𝜉, 𝑔)

]
𝑡=1:𝑇,𝑘=1:7 ∈ R𝑇×7

with respect to some goal 𝑔.

Model Architecture. Given the temporal nature of the data, we
adopted a transformer model [47] to preserve its sequential struc-
ture, which is essential for modeling correction decisions that are
inherently non-Markovian [15]. For a given trajectory 𝜉 , the model
takesΦ(𝜉, 𝑔) as input, applies masking to handle variable-length tra-
jectories, and uses positional encoding to preserve temporal order.
The encoder consists of two transformer layers, each comprising a
multi-head self-attention mechanism (8 heads, embedding dimen-
sion 32) followed by a feed-forward network (64 hidden units) with
residual connections, dropout, and layer normalization.

Outputs & Loss Function. The final output layer applies a sigmoid
activation to produce a corresponding sequence of cumulative dis-
tribution function (CDF) probabilities PCDF (𝑡) = P(𝑡𝑐 ≤ 𝑡 | 𝜉, 𝑔)
representing the likelihood of a correction occurring at or before
that time step given the robot trajectory 𝜉 and goal of the task
𝑔. These predictions are compared against ground truth labels 𝑙𝑖𝑡 ,
where 𝑙𝑖𝑡 = 0 if no correction has occurred or the time step precedes
the correction, and 𝑙𝑖𝑡 = 1 for all time steps following the correction.
The model is trained using a binary cross-entropy loss with an
exponentially decayed learning rate schedule, and validation loss
is monitored to select the best-performing checkpoint.

Given the transformer-predicted CDFs for each trajectory, we
can derive the probability density function (PDF) of a correction
occurring at each time step 𝑡 as:

P(𝑡 | 𝜉, 𝑔) = PCDF (𝑡) − PCDF (𝑡 − 1)

= P(𝑡𝑐 ≤ 𝑡 | 𝜉, 𝑔) − P(𝑡𝑐 ≤ 𝑡 − 1 | 𝜉, 𝑔) .
(1)

The value of the PDF at the actual observed correction time 𝑡𝑐 is
taken at 𝑡 = 𝑡𝑐 , averaged within a 1.2-second window, and any
negative probabilities resulting from numerical artifacts are set to
zero.

4.2 Enhancing Goal Inference
In this section, we introduce three models for inferring the goal

distribution P(𝑔 | ·) that represents the robot’s estimate of where
the goal is. First, we define a WHERE model that relies solely on
the spatial information of the correction to infer the goal distribu-
tion, serving as a baseline. Next, we present a WHEN model that
relies on the timing of human intervention to perform goal infer-
ence, isolating the contribution of temporal information. Finally,
we present a COMBINED model that integrates both spatial and
timing information to infer the goal distribution. By comparing
these models, we can evaluate whether the timing of human in-
tervention provides additional informative signals beyond spatial
cues, thus testing our hypotheses in RQ2 and RQ3.

4.2.1 Inferring Goal using Timing Information

Using the timing prediction model before, the posterior distri-
bution over goals given the correction timing (defined asWHEN
model goal distribution) is:

P(𝑔 | 𝑡𝑐 , 𝜉) =
P(𝑡𝑐 | 𝑔, 𝜉) P(𝑔 | 𝜉)∑

𝑔∈G P(𝑡𝑐 | 𝑔, 𝜉) P(𝑔 | 𝜉) ∝ P(𝑡𝑐 | 𝑔, 𝜉), (2)

Assuming our prior over candidate goals P(𝑔 | 𝜉) = P(𝑔) is uniform
(i.e., the robot’s pre-planned trajectories are generated indepen-
dently of the sampled goal hypotheses).

4.2.2 RQ2: Goal Inference from Start of Correction

To addressRQ2, we aim to infer the intended goal location using
the spatial information available at the onset of the human correc-
tion; specifically, the position where the participant first grasps the
robot gripper 𝑐𝑝 and the velocity they apply at that moment 𝑐′𝑝 .
Because people do not always release the gripper precisely at the
goal after completing the correction, we decompose the process
into two stages. By first predicting where participants are likely to
release the gripper and then inferring the goal from these predicted
endpoints, the model captures the intermediate intent expressed
through the correction motion, resulting in a more interpretable
and realistic goal inference process.

In the first stage, we infer where people intend to move the robot.
We implement a feedforward Multilayer Perceptron (MLP) to model
𝑐𝑙 =MLP(𝑐𝑝 , 𝑐′𝑝 ); i.e., using the initial interaction (grasp position 𝑐𝑝
and velocity 𝑐′𝑝 ) to predict where the human releases the gripper 𝑐𝑙 .
The network consists of three fully connected layers with hidden
dimension 64 and ReLU activations.

In the second stage, we use the predicted release position to infer
the goal distribution. We fit a Gaussian Mixture Model (GMM) to
model the distribution of release positions relative to the ground-
truth goal position. This results in a model for PGMM (𝑐𝑙 | 𝑔).

Combining both the MLP and GMM, we can approximate the
WHERE model goal distribution as follows:

P(𝑔 | 𝑐𝑝 , 𝑐′𝑝 ) ≈ PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔), (3)

assuming a uniform distribution over goals. (Detailed proof in Ap-
pendix A.2.1.)

4.2.3 Combining WHEN and WHERE

In order to infer the goal by leveraging both spatial and temporal
information, we compute the posterior distribution over candidate



goals conditioned on the robot trajectory 𝜉 , the observed correction
timing 𝑡𝑐 , and the spatial information available at the onset of the
correction, including the grasp position 𝑐𝑝 and the initial correction
velocity 𝑐′𝑝 (the COMBINED model):

P(𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉) =
P(𝑡𝑐 | 𝑔, 𝜉) PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔)∑

𝑔∈G
P(𝑡𝑐 | 𝑔, 𝜉) PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔)

(4)

The full derivation of the COMBINEDmodel is in Appendix A.2.2.
Following Eq. 22, we also experiment with weighing P𝑤 (𝑡𝑐 | 𝑔, 𝜉)
and P(𝑐 | 𝑔) differently, so the weighted COMBINED model
becomes:

P𝑤 (𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉) =
P(𝑡𝑐 | 𝑔, 𝜉)𝛼 · PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔)1−𝛼∑

𝑔∈G
P(𝑡𝑐 | 𝑔, 𝜉)𝛼 · PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔)1−𝛼

(5)
where 𝛼 ∈ [0, 1] is a geometric weight.

4.2.4 RQ3: Goal Inference from End of Correction

Additionally, we investigate whether timing information can
enhance the precision of goal distribution inference. Instead of using
the grasp position 𝑐𝑝 and its corresponding velocity 𝑐′𝑝 , we directly
utilize previously fitted GMM PGMM (𝑐𝑙 | 𝑔). The resulting posterior
for the WHERE model is P(𝑔 | 𝑐𝑙 ) ∝ PGMM (𝑐𝑙 | 𝑔) (𝑐𝑙 | 𝑔). The
weighted COMBINED model becomes:

P𝑤 (𝑔 | 𝑡𝑐 , 𝑐𝑙 , 𝜉) =
P(𝑡𝑐 | 𝑔, 𝜉)𝛼 · PGMM (𝑐𝑙 | 𝑔)1−𝛼∑

𝑔∈G
P(𝑡𝑐 | 𝑔, 𝜉)𝛼 · PGMM (𝑐𝑙 | 𝑔)1−𝛼

, (6)

5 Evaluation
In prior work1, we conducted a user study (approved by our

Institutional Review Board) to collect correction data with 𝑁 = 120
participants recruited from a university community, resulting in a
total of 7,435 interaction episodes and 3,585 correction trajectories.
We now use this data to train and test our models in an offline
manner, enabling us to evaluate our research questions.

5.1 Data Collection
Each participant in our study was tasked with supervising a

7-DoF Kinova Gen3 robotic arm equipped with a Robotiq 2F-85
gripper, mounted on a horizontal linear actuator. During each
participant’s 1-hour session, the robot performed a series of 64
pick-and-place operations, where the goal was to insert various
shapes into matching color-coded target holes (goals). The robot ap-
proached each sub-task by executing joint motion pre-planned with
RRT* [45], which were smoothed before being executed through a
velocity-based PID controller. Participants were free to intervene at
any time during the robot’s motion. Upon applying physical force
to guide the robot, an admittance control scheme [24, 28] allowed
the robot to respond compliantly. We used the recursive Newton-
Euler algorithm for inverse dynamics and gravity compensation [8].
Corrections terminated when participants ceased applying force;
the robot then replanned from the corrected state to the closest
viable goal while preserving the end-effector’s final orientation.

1Citation redacted for anonymity.

Figure 2: Corrections occurring at different percentage stages of the trajectory.
The percentage denotes the portion of the robot’s pre-planned trajectory that
was executed before the first human correction occurred.

Sensor readings from joint encoders, torque sensors, and control in-
puts were collected at 10Hz. Cartesian states are computed through
forward dynamics [10].

For the block placement task, we consider four distinct shapes
— circle, square, triangle, and rectangle — each paired with four
colored holes positioned at different locations on the board. Each
unique shape–color pairing defines a distinct task (goal) constraint
that the model is trained to learn.

Although participants could issue multiple interventions, we
restrict our analysis to the first correction event in each trial to
keep the problem tractable. We find that these first corrections
occur throughout different phases of the robot’s trajectory (Fig. 2),
meaning that our study covers early and late corrections.

5.2 Model Training
For the timing prediction model, all trajectory inputs are derived

from the robot’s pre-planned trajectories. For non-corrected trials,
we use the uninterrupted executed trajectory. For corrected trials,
we combine the pre-correction executed segment with the intended
(but unexecuted) remainder of the pre-planned trajectory.

We first create sets corresponding to correction timing percent-
ages (≤70%, ≤80%, ≤90% and ≤100%), measured as the proportion
of the trajectory executed prior to the first correction. For each per-
centage set, we split the trajectories involving human corrections
into a training set (60%), a validation set (10%), and a test set (30%).
For correction timing prediction, we trained the transformer model
using features extracted from the training and validation sets, and
included an equal number of uncorrected trajectories during train-
ing to enable the model to predict both if and when corrections
occur. For goal distribution inference, we trained the MLP and fitted
the GMM using the same training and validation sets with only the
trajectories involving corrections.

5.3 Evaluation Metrics
For RQ1, we evaluate the accuracy of correction timing predic-

tion and analyze the contribution of each trajectory-based feature
through ablation studies. For RQ2 and RQ3, we assess the WHEN
model’s ability to enhance the precision of goal inference.

5.3.1 Transformer Accuracy

We evaluate the model’s correction timing prediction accuracy
to assess whether the trajectory-based features effectively capture
the motion factors that drive human intervention. Strong predic-
tion performance indicates that these features are informative and



relevant for answering RQ1 — understanding what aspects of ro-
bot motion lead to human decisions to intervene. We compare
performance of our multi-feature model against a single-feature
Boltzmann baseline, where the only input to the transformer is
the Boltzmann optimality feature Φ𝑡 = [𝜙7

𝑡 ], representing the com-
monly used model for correction behavior in prior work. All eval-
uations are conducted over 200 random training, validation, and
test splits of the dataset to ensure that the observed performance is
robust and statistically reliable. All sets include equal numbers of
correction-inducing and uncorrected trajectories.

(1) F1 Score: We report the mean F1 score across test set to
measure how well the model is able to predict that a correction
has happened and has not on a timestep level. We set a threshold
of 0.5 to convert the predicted probabilities 𝑝𝑡 into binary labels:
𝑙𝑡 = 𝐻 (𝑝𝑡 − 0.5) and compare to the ground truth labels, where
𝐻 (·) is the unit step function.

(2) Correction MAE: To evaluate the accuracy of correction
timing prediction, we define the predicted correction time as the
first time step at which the predicted label 𝑙𝑡 transitions from 0 to
1 and remains 1 thereafter. For each trajectory, we compute the
absolute time difference between the predicted correction time 𝑡𝑐
and the ground truth correction time 𝑡𝑐 . The overall mean abso-
lute error (MAE) is then reported as MAE = 1

𝑁

∑𝑁
𝑖=1

���𝑡𝑐 (𝑖 ) − 𝑡
(𝑖 )
𝑐

���,
averaged across all test trajectories.

(3) Predicted Correction Ratio: We compare the number of
trajectories predicted to involve corrections with the number of
trajectories that actually involve corrections in the test set, assessing
how accurately the model identifies trajectories that involve human
intervention.

5.3.2 Feature Importance

We further analyze the contribution of each feature to address
RQ1. We conduct a feature ablation study, excluding one feature
at a time during training and evaluating the resulting drop in F1
score. This analysis reveals which aspects of the robot’s motion
most strongly influence human correction timing decisions at dif-
ferent stages of the trajectory. The evaluation is conducted over
200 random training, validation, and test splits of the dataset.

5.3.3 Goal Inference Accuracy

We investigate whether timing information improves goal infer-
ence using information from the start of corrections (RQ2) and end
of corrections (RQ3) For all models, we uniformly sample candi-
date goal positions 𝑔 on the (𝑥,𝑦) plane at 𝑧 = 0, assuming that the
𝑧-coordinate has minimal influence on participants’ perception of
the goal. The sampled region spans 40 cm× 60 cm around the board
area where the actual goals are located, with a sampling resolution
of Δ𝑥 = Δ𝑦 = 1 cm.

We compare the mean Kullback–Leibler Divergence (KLD) [31]
between the inferred and ground truth goal distributions for the
WHEN, WHERE, and weighted COMBINED models across all
trajectories in the test set to evaluate their goal inference accuracy.
For the weighted COMBINED model, we set 𝛼 = 0.8 to balance the
contributions of timing and spatial information (details about how
we picked 𝛼 in Appendix A.5). The evaluation is conducted over 50
random training, validation, and test splits of the dataset.

Figure 3: F1 score comparison between the multi-feature model and the Boltz-
mann baseline at different correction timing percentages. Each percentage
represents the portion of the trajectory completed before the first correction
occurred.

Figure 4: Ratio of predicted to actual corrections for the multi-feature model
and the Boltzmann baseline across different correction timing percentages.

Ground Truth. To estimate the ground truth goal distribution
for each shape, we employ a sim-to-real approach [11]. We first
conduct block-dropping simulations [9] across a range of potential
target positions, recording whether each drop successfully landed
in the actual target region (1 for success, 0 for failure). Using eigen-
entropy [17], we then select a set of 100 poses that were maximally
informative. These sampled poses were executed in the real world,
and the corresponding outcomes were recorded. By comparing the
simulation and real-world results for these poses, we identified the
most accurate simulator for each shape.

With the selected simulators, we performed 105 additional block
drops at randomly sampled poses. We recorded the poses that re-
sulted in successful placements and aggregated these outcomes to
construct the ground-truth goal distribution. This distribution was
modeled using a GMM centered at the true target positions and
evaluated at 𝑧 = 0.08, since small variations in the 𝑧-coordinate do
not affect whether the block successfully lands in the target. For
each colored target, we applied an offset to shift the GMM center
to align with the actual absolute target position corresponding to
that specific color.

6 Results
(1) Correction Timing Accuracy: Across 200 runs, the multi-

feature model consistently outperformed the Boltzmann baseline in
F1 score, particularly when later corrections were included (Fig. 3).



Figure 5: Mean difference between predicted and actual correction timing
(in seconds) for the multi-feature model and the Boltzmann baseline across
different correction timing percentages. Lower MAE means better accuracy.

It also achieved better correction timing accuracy at 80%, 90% and
100% of the trajectory (Fig. 5), and was significantly more accurate
in predicting the number of actual corrections across all correction
timing percentages (Fig. 4). At the same time, both models showed
declining F1 scores and predicted/actual correction ratios as later
corrections were considered, while the correction timing becomes
more accurate.

(2) Feature Importance: For feature importance in Fig. 6, we
observed that different trajectory features affected the model’s F1
score at different stages of the trajectory, mostly resulting in a de-
crease when the feature was removed. Some feature removals led
to minimal or insignificant changes. Boltzmann optimality removal
led to performance drops at 80%, 90%, and 100%. Optimal velocity
alignment removal decreased performance at 80%, direct velocity
alignment at 80% and 90%, and velocity consistency when correc-
tions occurring at the end of the trajectory (100%) were included.
However, distance to goal removal led to a noticeable increase in
F1 score at 70%, 80%, and 90% of the trajectory.

(3) Goal Inference from Start of Correction: As shown in
Fig. 7a, when using the grasping location 𝑐𝑝 and initial velocity 𝑐′𝑝
to infer the goal distribution, the COMBINEDmodel achieves signif-
icantly lower KLD than either the WHEN or WHERE models alone
for each actual target before the latest corrections are included (70%,
80%, 90%). However, when later corrections are included (100%),
the COMBINED model performs worse than the WHERE model.

(4) Goal Inference from End of Correction: As shown in
Fig. 7b, when using the leaving location 𝑐𝑙 to infer the goal dis-
tribution, the COMBINED model achieves lower KLD than the
WHEN model but does not outperform the WHERE model across
all correction timing percentages.

7 Discussion
Can we predict intervention timing using robot motion

features? We demonstrate that the model successfully predicts
both whether and when a correction will occur, achieving strong
F1 scores (Fig. 3), high correction capture ratios (Fig. 4), and low
mean absolute timing errors (Fig. 5). These results indicate that
human intervention decisions are non-Markovian — they depend
not only on the current state but also on the preceding trajectory
history. Moreover, our multi-feature model consistently outper-
forms the Boltzmann baseline, particularly when later corrections

Figure 6: F1 scores for the baseline model and ablation models excluding
individual features, evaluated across different correction timing percentages.
Statistical significance indicates that the F1 score differs significantly from
the baseline, suggesting that the removed feature has a meaningful influence
on prediction performance. A decrease in F1 score implies that the excluded
feature contributed positively to the model.

are included, suggesting that human intervention decisions are
influenced by multiple aspects of robot motion rather than a single
optimality-based factor.

Which features of robot motion influence intervention
decisions? The feature ablation results (Fig. 6) show that multi-
ple motion features jointly influence correction prediction, with
no single feature causing a drastic performance drop. Removing
optimality consistently reduces performance at 80%, 90%, and 100%,
indicating its stable relevance for later-stage corrections. Direct
velocity alignment has the strongest impact at 80% and 90%, sug-
gesting it shapes mid-trajectory intervention decisions. Velocity
consistency affects performance only at 100%, aligning with the



(a) Results when using start-of-correction data to infer goal distribution. (b) Results when using end-of-correction data to infer goal distribution.

Figure 7: KLD between the ground-truth goal distributions and the inferred goal after each correction in the test set, evaluated over 50 random dataset splits.
Results are shown for each goal inference model (WHEN, WHERE, and COMBINED) across different correction timing percentages. The results are aggregated
across all targets and shapes.

robot’s natural deceleration near task completion, while optimal
velocity alignment matters mainly at 80%. Interestingly, removing
distance-to-goal improves performance, suggesting that humans
attend less to absolute goal distance and more to motion cues —
such as alignment and efficiency — that signal whether the robot
behaves as expected.

Can timing information improve inference of human in-
tended goals and task objectives?We find that when using infor-
mation available at the onset of a correction, the COMBINEDmodel
achieves higher goal inference accuracy than both the WHEN and
WHERE models alone for earlier corrections (70%, 80%, and 90%)
(Fig. 7a). This indicates that timing information enhances early goal
inference from correction onset before the correction completes.

In contrast, when goal inference is based on the release posi-
tion of the gripper, the COMBINED model does not outperform
the WHERE model (Fig. 7b). In our dataset, participants typically
released the gripper very close to the intended goal, making the
release position itself an almost complete indicator of the goal dis-
tribution. Consequently, timing information adds little value for
refining task objectives in this setting.

In what settings it useful to incorporate timing for learn-
ing from corrections? Correction timing enhances prediction of
participants’ intended correction goals when combined with initial
contact information, enabling earlier inference of intent without
observing the full correction. Building on shared autonomy frame-
works like Javdani et al. [23], such early intent prediction could
help robots use feedback more efficiently and provide proactive
assistance as soon as an intervention begins.

Although timing does not improve task constraint inference from
correction endpoints, this likely reflects our task’s simplicity; in
more complex settings with less direct correction–goal mappings,
timing may remain a valuable complementary signal.

When are human corrections most informative? The tim-
ing prediction model performs best for mid-trajectory corrections,
showing higher F1 scores (Fig. 3) and correction detection rates
(Fig. 4). In our dataset, many interventions happen very late (Fig. 2),
with participants often waiting until the end of the task to inter-
vene. These late-stage corrections are harder to predict due to the
limited number of positive samples (less time steps before which
correction occurs) and provide less informative feedback as much

of the task has already been executed. The smaller mean timing
error at late stages (Fig. 5) likely results from the greater number
of late corrections.

Consistent with this, early goal inference performs best when
corrections occur earlier, whereas the benefit of timing information
diminishes for late corrections (100%) (Fig. 7a). Since participants
often grasp the robot near the goal, the WHERE model already
predicts the intended endpoint accurately, leaving little room for
timing cues to help. Additionally, with minimal trajectory remain-
ing, late corrections provide limited opportunity for timing-based
inference.

Limitations and Future Work. We found no improvement in
goal inference from post-correction positions, likely because our
task was simple and direct — the end position already revealed
the goal. Future work will explore more complex settings where
corrections are less explicit, and timing may better reveal underly-
ing task constraints. While our model predicts whether and when
corrections occur, it has yet to be integrated into real-time plan-
ning. Embedding this predictive ability into online control could
help robots anticipate human goals and adapt dynamically. Finally,
our current feature set, though effective, may not capture all fac-
tors driving human corrections; richer, task-specific features could
enhance future models.

8 Conclusion
Our results show that correction timing provides meaningful

insight into human intervention behavior and offers valuable in-
formation for early goal inference. We successfully model both
whether and when humans issue corrections, showing that these
decisions depend on the trajectory history rather than the current
state alone. Feature ablation analysis indicates that multiple aspects
of robot motion jointly influence intervention timing. Based on
this, integrating timing with spatial cues in the COMBINED model
improves goal inference accuracy, enabling earlier prediction of hu-
man intended correction goal and supporting more proactive robot
assistance. However, timing adds little benefit when goal inference
is based on the gripper’s final release position, as this already pro-
vides a near-complete signal of the task goal. Overall, correction



timing is most valuable for early intent inference when spatial in-
formation is incomplete, highlighting its role as a complementary
signal for learning from human feedback.
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A Appendix
A.1 Feature Details
A.1.1 Optimal Trajectories

We generate a reference trajectory using a PID controller follow-
ing the original pre-planned trajectory to obtain the optimal veloci-
ties 𝑣opt𝑡 and optimal positions 𝑥opt𝑡 used to compute the alignment-
related features. At each time step 𝑡 along an original trajectory, the
controller produced a “natural” trajectory from the robot’s current
state—specifically its position 𝑥𝑡 and velocity 𝑣𝑡—toward the goal
𝐺∗. We consider this reference trajectory to be “optimal” in the
sense that it reflects what a human might intuitively expect the
robot to do from that point onward, based on the smoothness and
predictability of PID-generated motion [35]. We then compute the
position and velocity by interpolating the dynamics 0.25 seconds
into the future along this reference trajectory to represent 𝑥opt𝑡 and
𝑣
opt
𝑡 , respectively.

A.1.2 Legibility

To represent legibility, we adopt the formulation from Dragan
et al. [12] and compute a score 𝑙𝑡 at each time step 𝑡 as:

𝑙𝑡 =

∫
P(𝐺∗ | 𝜉𝑆→𝑥𝑡 ) 𝛾𝑡 𝑑𝑡∫

𝛾𝑡 𝑑𝑡
(7)

where 𝛾𝑡 =𝑇 − 𝑡 is a discount factor that gives more weight to
earlier parts of the trajectory and 𝑇 is the total trajectory duration.
The term P(𝐺∗ | 𝜉𝑆→𝑥𝑡 ) is the probability that the robot is going to
goal𝐺∗, given the observed trajectory prefix 𝜉𝑆→𝑥𝑡 , and is computed
as:

P(𝐺∗ | 𝜉𝑆→𝑥𝑡 ) ∝
exp

(
−C(𝜉𝑆→𝑥𝑡 ) − C(𝜉opt

𝑥𝑡→𝐺∗ )
)

exp
(
−C(𝜉opt

𝑆→𝐺∗ )
) P(𝐺∗) (8)

This probability measures how efficient it is to reach the goal𝐺∗

via the current observed trajectory snippet 𝜉𝑆→𝑥𝑡 , followed by an
optimal completion 𝜉

opt
𝑥𝑡→𝐺∗ , relative to the cost of the optimal tra-

jectory 𝜉opt
𝑆→𝐺∗ . In our implementation, we define the cost function

C(·) as the total trajectory length. Higher legibility indicates that
the robot’s motion strongly suggests its intention to reach the goal
𝐺∗ early on.

A.2 Derivation of the Goal Inference
Formulation

A.2.1 Inferring fromWhere People Grasp the Gripper

First we derive the posterior over goals given the release position
is

P(𝑔 | 𝑐𝑙 ) ∝ P(𝑐𝑙 | 𝑔) · P(𝑔) ∝ P(𝑐𝑙 | 𝑔), (9)

assuming a uniform prior over goals.
During testing, for each trajectory, given the grasp position 𝑐𝑝

and velocity 𝑐′𝑝 , the MLP predicts the release position:

𝑐𝑙 = 𝑓MLP (𝑐𝑝 , 𝑐′𝑝 ). (10)

We assume 𝑐𝑙 and 𝑐𝑙 follow the same distribution. Through the
MLP and using the Baye’s Rule from Eq. 9, the posterior over goals

conditioned on the grasp position and velocity becomes (defined as
WHERE model goal distribution):

P(𝑔 | 𝑐𝑝 , 𝑐′𝑝 ) = P(𝑔 | 𝑐𝑙 ) ∝ P(𝑐𝑙 | 𝑔), (11)

where P(𝑐𝑙 | 𝑔) is calculated using the GMM fitted for P(𝑐𝑙 | 𝑔).

A.2.2 Combining When and Where

To derive the posterior over goals using both spatial and timing
information:

P(𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉) =
P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉 | 𝑔)P(𝑔)

P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉)
(12)

We expand the joint probability in the numerator using the chain
rule:

P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉 | 𝑔) = P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 | 𝑔, 𝜉) P(𝜉 | 𝑔). (13)
In our setup, the robot’s pre-planned trajectories are generated

independently of the sampled goal hypotheses. Therefore, we as-
sume that the trajectory 𝜉 and the goal 𝑔 are independent a priori,
such that P(𝜉 | 𝑔) = P(𝜉). Substituting this into Eq. 12 gives:

P(𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉 ) =
P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 | 𝑔, 𝜉 ) P(𝑔)

P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 | 𝜉 ) . (14)

We assume conditional independence between the correction
timing 𝑡𝑐 and the correction initiation parameters (𝑐𝑝 , 𝑐′𝑝 ) given the
goal 𝑔 and the trajectory 𝜉 , as they capture distinct aspects of the
human intervention process: when the human decides to intervene,
whereas (𝑐𝑝 , 𝑐′𝑝 ) describe how the correction is initiated spatially
and dynamically.:

P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 | 𝑔, 𝜉) = P(𝑡𝑐 | 𝑔, 𝜉) P(𝑐𝑝 , 𝑐′𝑝 | 𝑔, 𝜉). (15)

This assumption is supported empirically in our correlation analysis
(Appendix A.3.1).

Substituting back:

P(𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉 ) =
P(𝑡𝑐 | 𝑔, 𝜉 )P(𝑐𝑝 , 𝑐′𝑝 | 𝑔, 𝜉 )P(𝑔)

P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 | 𝜉 ) (16)

The denominator is a normalization constant computed as the
sum over all possible goals G.

P(𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 | 𝜉 ) =
∑︁
𝑔∈G

P(𝑡𝑐 | 𝑔, 𝜉 )P(𝑐𝑝 , 𝑐′𝑝 | 𝑔, 𝜉 )P(𝑔) (17)

Thus, we have

P(𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉 ) =
P(𝑡𝑐 | 𝑔, 𝜉 )P(𝑐𝑝 , 𝑐′𝑝 , | 𝑔, 𝜉 )P(𝑔)∑

𝑔∈G
P(𝑡𝑐 | 𝑔, 𝜉 )P(𝑐𝑝 , 𝑐′𝑝 | 𝑔, 𝜉 )P(𝑔) (18)

To calculate P(𝑐𝑝 , 𝑐′𝑝 | 𝑔, 𝜉), we assume that 𝑐𝑝 , 𝑐′𝑝 is independent
of 𝜉 since the correction initiation should reflect human’s intent
based on the task goal rather than the shape of the robot’s pre-
planned trajectory, so it becomes P(𝑐𝑝 , 𝑐′𝑝 | 𝑔). This assumption is
partially supported by our correlation analysis in Appendix A.3.2,
where the grasp position 𝑐𝑝 exhibits negligible correlation with
trajectory similarity across different 𝜉 ’s. 𝑐′𝑝 is dependent on where
the correction begins, so the weak dependence of 𝑐𝑝 suggests that
the influence of 𝜉 on correction initiation can be reasonably ignored
for our modeling purposes.

Eventually, the equation becomes:



P(𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉 ) =
P(𝑡𝑐 | 𝑔, 𝜉 )P(𝑐𝑝 , 𝑐′𝑝 , | 𝑔)P(𝑔)∑

𝑔∈G
P(𝑡𝑐 | 𝑔, 𝜉 )P(𝑐𝑝 , 𝑐′𝑝 | 𝑔)P(𝑔) (19)

Potential goals are uniformly sampled, thus 𝑃 (𝑔) is uniform,
so the posterior (COMBINED model goal distribution posterior)
becomes:

P(𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉) =
P(𝑡𝑐 | 𝑔, 𝜉)P(𝑐𝑝 , 𝑐′𝑝 | 𝑔)∑

𝑔∈G
P(𝑡𝑐 | 𝑔, 𝜉)P(𝑐𝑝 , 𝑐′𝑝 | 𝑔) (20)

where P(𝑡𝑐 |𝑔, 𝜉) is derived from Eq.1, and through the MLP:

P(𝑐𝑝 , 𝑐′𝑝 | 𝑔) ∝ P(𝑐𝑙 | 𝑔) = PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔) . (21)

Thus,

P(𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉) =
P(𝑡𝑐 | 𝑔, 𝜉) PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔)∑

𝑔∈G
P(𝑡𝑐 | 𝑔, 𝜉) PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔)

(22)

A.3 Correlations
A.3.1 Correlation Between Correction Timing 𝑡𝑐 and Spatial
Information (𝑐𝑝 , 𝑐′𝑝 )

To verify the assumption that correction timing is largely inde-
pendent of spatial displacement, we computed the Pearson corre-
lation between the normalized correction timing (in seconds) and
the grasp positions relative to the actual goal and the initial correc-
tion velocity along each spatial dimension. Across all 3,589 filtered
correction samples, we observe the following correlations for the
grasp position 𝑐𝑝 and the initial correction velocity 𝑐′𝑝 :

Table 2: Pearson correlation between normalized correction
timing 𝑡𝑐 and correction spatial features.

Corr. w/ 𝑥 Corr. w/ 𝑦 Corr. w/ 𝑧

Grasp position 𝑐𝑝 0.092 0.039 -0.600
Initial correction velocity 𝑐′𝑝 0.077 -0.010 0.264

The results show weak correlations between 𝑡𝑐 and both 𝑥 and 𝑦
components of 𝑐𝑝 and 𝑐′𝑝 , suggesting that the timing of intervention
is largely independent of where and how participants initiate the
correction in the horizontal plane. The moderate correlations along
the 𝑧-axis likely reflect the vertical component of the motion, which
is peripheral to goal inference that primarily occurs in the 𝑥–𝑦
plane. Therefore, we approximate 𝑡𝑐 and (𝑐𝑝 , 𝑐′𝑝 ) as conditionally
independent given 𝑔 and 𝜉 .

A.3.2 Correlation Between Grasp Position 𝑐𝑝 and Trajectory
𝜉 Similarities

To verify that the spatial similarity between grasp locations is
independent from the overall trajectory similarity, we computed
both dynamic time warping (DTW) [43] distances between full
correction trajectories and Euclidean distances between their corre-
sponding correction endpoints. From 3,589 correction trajectories,
we randomly sampled 353,500 trajectory pairs and calculated the
Pearson and Spearman correlations between the two distance mea-
sures.

Figure 8: KLD vs. different weight 𝛼

The Pearson correlation coefficient was 𝑟 = 0.02 (𝑝 < 0.001)
and the Spearman rank correlation was 𝜌 = 0.04 (𝑝 < 0.001),
both indicating negligible relationships between trajectory and
endpoint similarities. These results confirm that trajectories that
are temporally or kinematically similar do not necessarily result in
spatially similar correction endpoints. Therefore, it is reasonable to
treat the temporal and spatial components of human corrections as
independent in our modeling framework.

A.4 Model Details
A.4.1 Transformer

We optimize binary cross-entropy over valid time steps only,
using the mask 𝑀 as sample weights. We use Adam [29] with
gradient clipping (∥𝑔∥2 clipnorm = 1.0) and an exponentially decay-
ing learning rate (𝜂0=10−3, decay_steps = 1000, decay_rate = 0.9).
Model selection is done via a held-out validation set by monitoring
validation loss and saving the best checkpoint. Random seeds are
fixed for reproducibility. Input features are rescaled with the same
preprocessing on train/validation splits.

A.4.2 MLP

The model is trained using mean squared error (MSE) loss and
optimized with the Adam [29] optimizer with an exponentially
decayed learning rate. Validation loss is monitored at each epoch,
and the best-performing model is saved based on the lowest vali-
dation loss. All inputs and outputs are normalized using statistics
computed from the training set to ensure stable convergence.

A.5 Geometric Weight 𝛼
To determine the balance between timing and spatial information

in the COMBINED model, we varied 𝛼 ∈ [0.1, 0.9] in the weighted
posterior:

P𝑤 (𝑔 | 𝑡𝑐 , 𝑐𝑝 , 𝑐′𝑝 , 𝜉) =
P(𝑡𝑐 | 𝑔, 𝜉)𝛼 · PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔)1−𝛼∑

𝑔∈G
P(𝑡𝑐 | 𝑔, 𝜉)𝛼 · PGMM (MLP(𝑐𝑝 , 𝑐′𝑝 ) | 𝑔)1−𝛼

(23)



For testing, we evaluated how the KLD between the inferred and
ground-truth goal distributions (using correction onset information
𝑐𝑝 , 𝑐

′
𝑝 ) varies with 𝛼 at 80% correction timing percentages, aggre-

gated across all targets and shapes over 5 runs. The results in Fig. 8
show that 𝛼 = 0.8 yields the lowest mean KLD. Therefore, we set
𝛼 = 0.8 as the weighting parameter for all COMBINED models.

A.6 KLD Plot for Different Targets Using
Correction Onset Information

Figure 9: KLD between the ground-truth goal distributions and the inferred
goal using the start of the correction information after each correction in
the test set, evaluated over 50 random dataset splits. Results are shown for
each goal inference model (WHEN, WHERE, and COMBINED) across different
correction timing percentages. The results are aggregated across shapes.

We evaluate goal inference performance at each target using
the grasp location 𝑐𝑝 and initial velocity 𝑐′𝑝 as inputs. As shown in
Fig. 9, the COMBINED model yields significantly lower KLD than
either the WHEN or WHERE models for all targets when earlier
corrections are considered (70%, 80%, 90%). When late corrections
are included (100%), the COMBINED model performs comparably
to WHERE for side targets (targets 1 and 4; no significant differ-
ence) but slightly worse for center targets (targets 2 and 3). These
results suggest that timing information is most beneficial for early
corrections and becomes less informative when corrections occur
late and target distinctions are less pronounced.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning from Corrections
	2.2 Human Feedback Timing

	3 Problem Definition
	4 Approach
	4.1 Predicting WHEN People Give Corrections
	4.2 Enhancing Goal Inference

	5 Evaluation
	5.1 Data Collection
	5.2 Model Training
	5.3 Evaluation Metrics

	6 Results
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Feature Details
	A.2 Derivation of the Goal Inference Formulation
	A.3 Correlations
	A.4 Model Details
	A.5 Geometric Weight 
	A.6 KLD Plot for Different Targets Using Correction Onset Information


